Proton MR spectroscopy in mild traumatic brain injury

نویسندگان

  • Bożena Kubas
  • Wojciech Łebkowski
  • Urszula Łebkowska
  • Wojciech Kułak
  • Eugeniusz Tarasow
  • Jerzy Walecki
چکیده

BACKGROUND To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). MATERIAL/METHODS Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. RESULTS The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. CONCLUSIONS In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury.

BACKGROUND AND PURPOSE More than 85% of brain traumas are classified as "mild"; MR imaging findings are minimal if any and do not correspond to clinical symptoms. Our goal, therefore, was to quantify the global decline of the neuronal marker N-acetylaspartate (NAA), as well as gray (GM) and white matter (WM) atrophy after mild traumatic brain injury (mTBI). MATERIALS AND METHODS Twenty patien...

متن کامل

Diffuse metabolic abnormalities in acute mild traumatic brain injury: a quantitative proton MR spectroscopy study

INTRODUCTION: Traumatic brain injury (TBI) classified as ‘mild’ (mTBI) comprises 85% of cases, ~15% of which involve at least one nonresolving post-concussion syndrome symptom. It is not clear, however, whether the symptomatology is neurological and/or psychosomatic, since conventional imaging is usually unremarkable. Therefore, what distinguishes mild from more severe TBI is the lack of biomar...

متن کامل

Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study.

Single-voxel proton magnetic resonance imaging ((1)H-MRS) and proton MR spectroscopic imaging ((1)H-MRSI) were used to compare brain metabolite levels in semi-acute mild traumatic brain injury (mTBI) patients (n = 10) and matched healthy controls (n = 9). The (1)H-MRS voxel was positioned in the splenium, a region known to be susceptible to axonal injury in TBI, and a single (1)H-MRSI slice was...

متن کامل

Serial changes in metabolism and histology in the cold-injury trauma rat brain model--proton magnetic resonance imaging and spectroscopy study.

The serial changes in metabolism and histology during the first 24 hours in the cold-injury trauma rat brain model were investigated by proton magnetic resonance (MR) imaging and high-resolution proton MR spectroscopy. Edema developed extensively via the corpus callosum in the ipsi- and contralateral hemispheres during observation as shown by gradually increased signal intensity on proton MR im...

متن کامل

Late proton MR spectroscopy in children after traumatic brain injury: correlation with cognitive outcomes.

BACKGROUND AND PURPOSE Proton MR spectroscopy has demonstrated reduced levels of N-acetylaspartate (NAA) in normal-appearing occipital and frontal regions of patients with acute nonpenetrating traumatic brain injury (TBI). We studied the relationship of frontoparietal NAA, choline (Cho), and creatine (Cr) to test the hypothesis that reduction in NAA is predictive of cognitive outcome. METHODS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2010